Studies using the tARget AR data or AR detection code/algorithm (nonexhaustive list; updated on 15-Sep-2022):

  1. Kim, S., & Chiang, J. C. H. (2022). Atmospheric river lifecycle characteristics shaped by synoptic conditions at genesis. International Journal of Climatology, 42( 1), 521– 538. https://doi.org/10.1002/joc.7258
  2. Liang, J., Yong, Y. & Hawcroft, M.K. Long-term trends in atmospheric rivers over East Asia. Clim Dyn (2022). https://doi.org/10.1007/s00382-022-06339-5
  3. Clem, K.R., Bozkurt, D., Kennett, D. et al. Central tropical Pacific convection drives extreme high temperatures and surface melt on the Larsen C Ice Shelf, Antarctic Peninsula. Nat Commun 13, 3906 (2022). https://doi.org/10.1038/s41467-022-31119-4
  4. Gimeno, L., Sorí, R., Vázquez, M., Stojanovic, M., Algarra, I., Eiras-Barca, J., Gimeno-Sotelo, L., & Nieto, R. (2022). Extreme precipitation events. WIREs Water, e1611. https://doi.org/10.1002/wat2.1611
  5. Kim, S., L. R. Leung, B. Guan, and J. C. H. Chiang (2022): Atmospheric river representation in the Energy Exascale Earth System Model (E3SM) version 1.0, Geoscientific Model Development, 15, 5461–5480, doi:10.5194/gmd-15-5461-2022.
  6. Chakraborty, S., B. Guan, D. E. Waliser, and A. M. da Silva (2022): Aerosol atmospheric rivers: climatology, event characteristics, and detection algorithm sensitivities, Atmospheric Chemistry and Physics, 22, 8175–8195, doi:10.5194/acp-22-8175-2022.
  7. Nash, D., Carvalho, L.M.V., Jones, C., et al. Winter and spring atmospheric rivers in High Mountain Asia: climatology, dynamics, and variability. Clim Dyn (2022). https://doi.org/10.1007/s00382-021-06008-z
  8. Raquel Barata, Raquel Prado, Bruno Sansó (2022). Fast inference for time-varying quantiles via flexible dynamic models with application to the characterization of atmospheric rivers. Ann. Appl. Stat. 16(1) 247-271. https://doi.org/10.1214/21-AOAS1497
  9. Viceto, C., Gorodetskaya, I. V., Rinke, A., Maturilli, M., Rocha, A., and Crewell, S. (2022). Atmospheric rivers and associated precipitation patterns during the ACLOUD and PASCAL campaigns near Svalbard (May–June 2017): case studies using observations, reanalyses, and a regional climate model, Atmos. Chem. Phys., 22, 441–463, https://doi.org/10.5194/acp-22-441-2022.
  10. Kim, S., & Chiang, J. C. H. (2022). Atmospheric river lifecycle characteristics shaped by synoptic conditions at genesis. International Journal of Climatology, 42(1), 521–538. https://doi.org/10.1002/joc.7258
  11. Khouakhi, A., Driouech, F., Slater, L., Waine, T., Chafki, O., Chehbouni, A., & Raji, O. (2022). Atmospheric rivers and associated extreme rainfall over Morocco. International Journal of Climatology. https://doi.org/10.1002/joc.7676
  12. Zhao, M. (2022). A Study of AR-, TS-, and MCS-Associated Precipitation and Extreme Precipitation in Present and Warmer Climates, Journal of Climate, 35(2), 479-497. https://doi.org/10.1175/JCLI-D-21-0145.1
  13. Fish, M. A., Done, J. M., Swain, D. L., Wilson, A. M., Michaelis, A. C., Gibson, P. B., & Ralph, F. M. (2022). Large-Scale Environments of Successive Atmospheric River Events Leading to Compound Precipitation Extremes in California, Journal of Climate, 35(5), 1515-1536. https://doi.org/10.1175/JCLI-D-21-0168.1
  14. Olusola O. Ayantobo, Jiahua Wei, Guangqian Wang (2022), Climatology of landfalling atmospheric rivers and its attribution to extreme precipitation events over Yangtze River Basin, Atmospheric Research, 270, 106077, https://doi.org/10.1016/j.atmosres.2022.106077.
  15. Huang, H., Fischella, M. R., Liu, Y., Ban, Z., Fayne, J. V., Li, D., et al. (2022). Changes in mechanisms and characteristics of western U.S. floods over the last sixty years. Geophysical Research Letters, 49, e2021GL097022. https://doi.org/10.1029/2021GL097022
  16. Leung, L. R., Boos, W. R., Catto, J. L., et al. (2022). Exploratory Precipitation Metrics: Spatiotemporal Characteristics, Process-Oriented, and Phenomena-Based, Journal of Climate, 35(12), 3659-3686. https://doi.org/10.1175/JCLI-D-21-0590.1
  17. Collow, A. B. M., C. A. Shields, B. Guan, S. Kim, J. M. Lora, E. E. McClenny, et al. (2022), An overview of ARTMIP's Tier 2 Reanalysis Intercomparison: Uncertainty in the detection of atmospheric rivers and their associated precipitation. Journal of Geophysical Research: Atmospheres, 127, e2021JD036155, doi:10.1029/2021JD036155.
  18. O’Brien, T. A., and Coauthors (including B. Guan) (2022), Increases in future AR count and size: Overview of the ARTMIP Tier 2 CMIP5/6 experiment, Journal of Geophysical Research: Atmospheres, 127, e2021JD036013, doi:10.1029/2021JD036013.
  19. Francis, D., R. Fonseca, N. Nelli, D. Bozkurt, G. Picard, and B. Guan (2022), Atmospheric rivers drive exceptional Saharan dust transport towards Europe, Atmospheric Research, 266, 105959, doi:10.1016/j.atmosres.2021.105959.
  20. Zhang, Z., & Ralph, F. M. (2021). The Influence of Antecedent Atmospheric River Conditions on Extratropical Cyclogenesis, Monthly Weather Review, 149(5), 1337-1357.
  21. Xiong, Y., Ren, X. Contribution of Atmospheric Rivers to Precipitation and Precipitation Extremes in East Asia: Diagnosis with Moisture Flux Convergence. J Meteorol Res 35, 831–843 (2021). https://doi.org/10.1007/s13351-021-1066-2
  22. Eiras-Barca, J., Ramos, A. M., Algarra, I., Vázquez, M., Dominguez, F., Miguez-Macho, G., Nieto, R., Gimeno, L., Taboada, J., & Ralph, F. M. (2021). European West Coast atmospheric rivers: A scale to characterize strength and impacts. Weather and Climate Extremes, 31, 100305. https://doi.org/10.1016/j.wace.2021.100305
  23. Shu, J., Shamseldin, A.Y. & Weller, E. The impact of atmospheric rivers on rainfall in New Zealand. Sci Rep 11, 5869 (2021). https://doi.org/10.1038/s41598-021-85297-0
  24. Cao, Q., Shukla, S., DeFlorio, M. J., Ralph, F. M., & Lettenmaier, D. P. (2021). Evaluation of the Subseasonal Forecast Skill of Floods Associated with Atmospheric Rivers in Coastal Western U.S. Watersheds, Journal of Hydrometeorology, 22(6), 1535-1552.
  25. Sourav Mukherjee, & Ashok Kumar Mishra (2021), Cascading effect of meteorological forcing on extreme precipitation events: Role of atmospheric rivers in southeastern US, Journal of Hydrology, 601, 126641, https://doi.org/10.1016/j.jhydrol.2021.126641.
  26. Zhang, P., Chen, G., Ma, W., Ming, Y., & Wu, Z. (2021). Robust Atmospheric River Response to Global Warming in Idealized and Comprehensive Climate Models, Journal of Climate, 34(18), 7717-7734.
  27. Park, C., Son, S.-W., & Kim, H. (2021). Distinct features of atmospheric rivers in the early versus late east Asian summer monsoon and their impacts on monsoon rainfall. Journal of Geophysical Research: Atmospheres, 126, e2020JD033537. https://doi.org/10.1029/2020JD033537
  28. Gimeno, L., Algarra, I., Eiras-Barca, J., Ramos, A. M., & Nieto, R. (2021). Atmospheric river, a term encompassing different meteorological patterns. Wiley Interdisciplinary Reviews: Water, 8(6), e1558. https://doi.org/10.1002/wat2.1558
  29. Reyers, M., Boehm, C., Knarr, L., Shao, Y., & Crewell, S. (2021). Synoptic-to-Regional-Scale Analysis of Rainfall in the Atacama Desert (18°–26°S) Using a Long-Term Simulation with WRF, Monthly Weather Review, 149(1), 91-112.
  30. Ma, W., Chen, G., Peings, Y., & Alviz, N. (2021). Atmospheric river response to Arctic sea ice loss in the Polar Amplification Model Intercomparison Project. Geophysical Research Letters, 48, e2021GL094883. https://doi.org/10.1029/2021GL094883
  31. Xiong, Y., & Ren, X. (2021). Influences of Atmospheric Rivers on North Pacific Winter Precipitation: Climatology and Dependence on ENSO Condition, Journal of Climate, 34(1), 277-292.
  32. Zhou, Y., Kim, H., & Waliser, D. E. (2021). Atmospheric river lifecycle responses to the Madden-Julian Oscillation. Geophysical Research Letters, 48, e2020GL090983. https://doi.org/10.1029/2020GL090983
  33. Prince, H. D., Cullen, N. J., Gibson, P. B., Conway, J., & Kingston, D. G. (2021). A Climatology of Atmospheric Rivers in New Zealand, Journal of Climate, 34(11), 4383-4402.
  34. Xiao, M., & Lettenmaier, D. P. (2021). Atmospheric rivers and snow accumulation in the Upper Colorado River basin. Geophysical Research Letters, 48, e2021GL094265. https://doi.org/10.1029/2021GL094265
  35. Zhou, Y., O'Brien, T. A., Ullrich, P. A., Collins, W. D., Patricola, C. M., & Rhoades, A. M. (2021). Uncertainties in atmospheric river lifecycles by detection algorithms: Climatology and variability. Journal of Geophysical Research: Atmospheres, 126, e2020JD033711. https://doi.org/10.1029/2020JD033711
  36. Prince, H. D., P. B. Gibson, M. J. DeFlorio, T. W. Corringham, A. Cobb, B. Guan, F. M. Ralph, and D. E. Waliser (2021), Genesis locations of the costliest atmospheric rivers impacting the western United States, Geophys. Res. Lett., 48, e2021GL093947, doi:10.1029/2021GL093947.
  37. Ryu, Y., H. Moon, J. Kim, T.-J. Kim, K.-O. Boo, B. Guan, et al. (2021), A multi-inventory ensemble analysis of the effects of atmospheric rivers on precipitation and streamflow in the Namgang-dam basin in Korea, Water Resources Research, 57, e2021WR030058, doi:10.1029/2021WR030058.
  38. Pagano, T. J., D. E. Waliser, B. Guan, H. Ye, F. M. Ralph, and J. Kim (2021), Extreme surface winds during landfalling atmospheric rivers: the modulating role of near-surface stability, J. Hydrometeor., 22, 1681–1693, doi:10.1175/JHM-D-20-0165.1.
  39. Chakraborty, S., B. Guan, D. E. Waliser, A. Da Silva, S. Uluatam, and P. Hess (2021), Extending the atmospheric river concept to aerosols: climate and air quality impacts, Geophys. Res. Lett., 48, e2020GL091827, doi:10.1029/2020GL091827.
  40. Bozkurt, D., O. L. Sen, Y. Ezber, B. Guan, M. Viale, and F. Caglar (2021), Influence of African atmospheric rivers on precipitation and snowmelt in the Near East's highlands, J. Geophys. Res.: Atmos., 126, e2020JD033646, doi:10.1029/2020JD033646.
  41. Algarra, I., Nieto, R., Ramos, A. M., et al. Significant increase of global anomalous moisture uptake feeding landfalling Atmospheric Rivers. Nat Commun 11, 5082 (2020). https://doi.org/10.1038/s41467-020-18876-w
  42. Zhao, M. (2020). Simulations of Atmospheric Rivers, Their Variability, and Response to Global Warming Using GFDL’s New High-Resolution General Circulation Model, Journal of Climate, 33(23), 10287-10303.
  43. Lamjiri, M. A., Ralph, F. M., & Dettinger, M. D. (2020). Recent Changes in United States Extreme 3-Day Precipitation Using the R-CAT Scale, Journal of Hydrometeorology, 21(6), 1207-1221.
  44. Edwards, TK, Smith, LM, Stechmann, SN. Atmospheric rivers and water fluxes in precipitating quasi-geostrophic turbulence. Q J R Meteorol Soc. 2020; 146: 1960– 1975. https://doi.org/10.1002/qj.3777
  45. Jennrich, G. C., Furtado, J. C., Basara, J. B., & Martin, E. R. (2020). Synoptic Characteristics of 14-Day Extreme Precipitation Events across the United States, Journal of Climate, 33(15), 6423-6440.
  46. Lora, J. M., Shields, C. A., & Rutz, J. J. (2020). Consensus and disagreement in atmospheric river detection: ARTMIP global catalogues. Geophysical Research Letters, 47, e2020GL089302. https://doi.org/10.1029/2020GL089302
  47. Beall, C. M., Lucero, D., Hill, T. C., DeMott, P. J., Stokes, M. D., and Prather, K. A.: Best practices for precipitation sample storage for offline studies of ice nucleation in marine and coastal environments, Atmos. Meas. Tech., 13, 6473–6486, https://doi.org/10.5194/amt-13-6473-2020, 2020.
  48. Kim, J., H. Moon, B. Guan, D. E. Waliser, J. Choi, T.‐Y. Gu, and Y.‐H. Byun (2020), Precipitation characteristics related to atmospheric rivers in East Asia, Int. J. Climatol., 41 (Suppl. 1), E2244–E2257, doi:10.1002/joc.6843.
  49. Ionita, M., V. Nagavciuc, and B. Guan (2020), Rivers in the sky, flooding on the ground: the role of atmospheric rivers in inland flooding in central Europe, Hydrol. Earth Syst. Sci., 24, 5125–5147, doi:10.5194/hess-24-5125-2020.
  50. Ma, W., G. Chen, and B. Guan (2020), Poleward shift of atmospheric rivers in the Southern Hemisphere in recent decades, Geophys. Res. Lett., 47, e2020GL089934, doi:10.1029/2020GL089934.
  51. Arabzadeh, A., M. R. Ehsani, B. Guan, S. Heflin, and A. Behrangi (2020), Global intercomparison of atmospheric rivers precipitation in remote sensing and reanalysis products, J. Geophys. Res. Atmos., 125, e2020JD033021, doi:10.1029/2020JD033021.
  52. Massoud, E., T. Massoud, B. Guan, A. Sengupta, V. Espinoza, M. De Luna, C. Raymond, D. Waliser (2020), Atmospheric rivers and precipitation in the Middle East and North Africa (MENA), Water, 12, 2863, doi:10.3390/w12102863.
  53. Slinskey, E. A., P. C. Loikith, D. E. Waliser, B. Guan, and A. Martin (2020), A Climatology of atmospheric rivers and associated precipitation for the seven U.S. National Climate Assessment regions, J. Hydrometeor., 21, 2439–2456, doi:10.1175/JHM-D-20-0039.1.
  54. Guo, Y., T. Shinoda, B. Guan, D. E. Waliser, and E. K. M. Chang (2020), Statistical relationship between atmospheric rivers and extratropical cyclones and anticyclones, J. Climate, 33, 7817–7834, doi:10.1175/JCLI-D-19-0126.1.
  55. Dhana Laskhmi, D., Satyanarayana, A. N. V. (2020), Climatology of landfalling atmospheric rivers and associated heavy precipitation over the Indian coastal regions, Int. J. Climatol., doi:10.1002/joc.6540.
  56. Shinoda, T., Han, W., Zamudio, L., et al. (2020), Influence of atmospheric rivers on the Leeuwin Current system, Clim. Dyn., 54, 4263–4277, doi:10.1007/s00382-020-05228-z.
  57. Nash, D., and Carvalho, L. M. V. (2020), Brief Communication: An electrifying atmospheric river – understanding the thunderstorm event in Santa Barbara County during March 2019, Nat. Hazards Earth Syst. Sci., 20, 1931–1940, doi:10.5194/nhess-20-1931-2020, 2020.
  58. Edwards, T. K., Smith, L. M., Stechmann, S.N. (2020), Atmospheric rivers and water fluxes in precipitating quasi‐geostrophic turbulence, Q. J. R. Meteorol. Soc., 146, 1960–1975, doi:10.1002/qj.3777.
  59. Guan, B., D. E. Waliser, and F. M. Ralph (2020), A multimodel evaluation of the water vapor budget in atmospheric rivers, Ann. N.Y. Acad. Sci., 1472, 139–154, doi:10.1111/nyas.14368.
  60. Payne, A. E., Demory, M., Leung, L. R., et al. (2020), Responses and impacts of atmospheric rivers to climate change, Nat. Rev. Earth Environ., 1, 143–157, doi:10.1038/s43017-020-0030-5.
  61. Jennrich, G. C., J. C. Furtado, J. B. Basara, and E. R. Martin (2020), Synoptic characteristics of 14-day extreme precipitation events across the United States, J. Climate, 33, 6423–6440, doi:10.1175/JCLI-D-19-0563.1.
  62. Sharma, A. R., and Déry, S. J. (2020), Variability and trends of landfalling atmospheric rivers along the Pacific Coast of northwestern North America, Int. J. Climatol., 40, 544–558, doi:10.1002/joc.6227.
  63. Wang, Z., J. Walsh, S. Szymborski, and M. Peng (2020), Rapid Arctic sea ice loss on the synoptic time scale and related atmospheric circulation anomalies, J. Clim., 33, 1597–1617, doi:10.1175/JCLI-D-19-0528.1.
  64. Gibson, P. B, D. E. Waliser, B. Guan, M. J. DeFlorio, F. M. Ralph, and D. L. Swain (2020), Ridging associated with drought across the Western and Southwestern United States: characteristics, trends and predictability sources, J. Clim., 33, 2485–2508, doi:10.1175/JCLI-D-19-0439.1.
  65. Guan, B., and D. E. Waliser (2019), Tracking atmospheric rivers globally: Spatial distributions and temporal evolution of life cycle characteristics, J. Geophys. Res. Atmos., 124, 12523–12552, doi:10.1029/2019JD031205.
  66. Zhou, Y., & Kim, H. (2019), Impact of distinct origin locations on the life cycles of landfalling atmospheric rivers over the U.S. West Coast, J. Geophys. Res. Atmos., 124, 11897–11909, doi:10.1029/2019JD031218.
  67. Toride, K., Y. Iseri, A. M. Duren, J. F. England, and M. L. Kavvas (2019), Evaluation of physical parameterizations for atmospheric river induced precipitation and application to long-term reconstruction based on three reanalysis datasets in Western Oregon, Science of The Total Environment, 658, 570-581, doi:10.1016/j.scitotenv.2018.12.214.
  68. Zhou, Y., Nelson, K., Mohr, K. I., Huffman, G. J., Levy, R., & Grecu, M. (2019), A spatial‐temporal extreme precipitation database from GPM IMERG, J. Geophys. Res. Atmos., 124, 10344–10363, doi:10.1029/2019JD030449.
  69. Loikith, P. C., Pampuch, L. A., Slinskey, E., et al. (2019), A climatology of daily synoptic circulation patterns and associated surface meteorology over southern South America, Clim. Dyn., 53, 4019–4035, doi:10.1007/s00382-019-04768-3.
  70. Chapman, W. E., Subramanian, A. C., Delle Monache, L., Xie, S. P., & Ralph, F. M. (2019), Improving atmospheric river forecasts with machine learning, Geophysical Research Letters, 46, 10627–10635, doi:10.1029/2019GL083662.
  71. Rutz, J. J., Shields, C. A., Lora, J. M., Payne, A. E., Guan, B., Ullrich, P., et al. (2019), The atmospheric river tracking method intercomparison project (ARTMIP): quantifying uncertainties in atmospheric river climatology, Journal of Geophysical Research: Atmospheres, 124, 13777–13802, doi:10.1029/2019JD030936.
  72. DeFlorio, M. J., Waliser, D. E., Ralph, F. M., Guan, B., Goodman, A., Gibson, P. B., et al. (2019), Experimental subseasonal‐to‐seasonal (S2S) forecasting of atmospheric rivers over the western United States, Journal of Geophysical Research: Atmospheres, 124, 11242–11265, doi:10.1029/2019JD031200.
  73. Massoud, E. C., Espinoza, V., Guan, B., & Waliser, D. E. (2019), Global climate model ensemble approaches for future projections of atmospheric rivers, Earth's Future, 7, 1136–1151, doi:10.1029/2019EF001249.
  74. Dhana Lakshmi, D., A. N. V. Satyanarayana, and A. Chakraborty (2019), Assessment of heavy precipitation events associated with floods due to strong moisture transport during summer monsoon over India, J. Atmos. Sol.-Terr. Phys., 189, 123-140, doi:10.1016/j.jastp.2019.04.013.
  75. Lambrecht, K. M., B. J. Hatchett, L. C. Walsh, M. Collins, and Z. Tolby (2019), Improving visual communication of weather forecasts with rhetoric, Bull. Amer. Meteorol. Soc., 100, 557-563, doi:10.1175/BAMS-D-18-0186.1.
  76. Vázquez, M., I. Algarra, J. Eiras-Barca, A. M. Ramos, R. Nieto, L. Gimeno (2019), Atmospheric rivers over the Arctic: Lagrangian characterisation of their moisture sources, Water, 11, 41, doi:10.3390/w11010041.
  77. Eldardiry, H., A. Mahmood, X. Chen, F. Hossain, B. Nijssen, and D. P. Lettenmaier (2019), Atmospheric river–induced precipitation and snowpack during the western United States cold season, J. Hydrometeorol., 20, 613-630, doi:10.1175/JHM-D-18-0228.1.
  78. Shinoda, T., L. Zamudio, Y. Guo, E. J. Metzger, and C. W. Fairall (2019), Ocean variability and air-sea fluxes produced by atmospheric rivers, Scientific Reports, 9, 2152, doi:10.1038/s41598-019-38562-2.
  79. Cook, B. I., A. P. Williams, J. S. Mankin, R. Seager, J. E. Smerdon, and D. Singh (2018), Revisiting the leading drivers of Pacific coastal drought variability in the contiguous United States, J. Clim., 31, 25–43, doi:10.1175/JCLI‐D‐17‐0172.1.
  80. Huning, L. S., B. Guan, D. E. Waliser, and D. P. Lettenmaier (2019), Sensitivity of seasonal snowfall attribution to atmospheric rivers and their reanalysis‐based detection, Geophys. Res. Lett., 46, 794-803, doi:10.1029/2018GL080783.
  81. Ralph and Coauthors (2019), ARTMIP-early start comparison of atmospheric river detection tools: How many atmospheric rivers hit northern California's Russian River watershed? Clim. Dyn., 52, 4973-4994, doi:10.1007/s00382-018-4427-5.
  82. DeFlorio, M. J., D. E. Waliser, B. Guan, F. M. Ralph, and F. Vitart (2019), Global evaluation of atmospheric river subseasonal prediction skill, Clim. Dyn., 52, 3039-3060, doi:10.1007/s00382-018-4309-x.
  83. Ridder, N., H. de Vries, and S. Drijfhout (2018), The role of atmospheric rivers in compound events consisting of heavy precipitation and high storm surges along the Dutch coast, Nat. Hazards Earth Syst. Sci., 18, 3311-3326, doi:10.5194/nhess-18-3311-2018.
  84. Zhou, Y., H. Kim, and B. Guan (2018), Life cycle of atmospheric rivers: Identification and climatological characteristics, Journal of Geophysical Research: Atmospheres, 123, doi:10.1029/2018JD029180.
  85. Zhang, Z., F. M. Ralph, and M. Zheng (2018), The relationship between extratropical cyclone strength and atmospheric river intensity and position, Geophysical Research Letters, 45, doi:10.1029/2018GL079071.
  86. Eiras-Barca, J., N. Lorenzo, J. Taboada, A. Robles, and G. Miguez-Macho (2018), On the relationship between atmospheric rivers, weather types and floods in Galicia (NW Spain), Nat. Hazards Earth Syst. Sci., 18, 1633-1645, doi:10.5194/nhess-18-1633-2018.
  87. Ramos, A. M., R. M. Trigo, R. Tome, and M. L. R. Liberato (2018), Impacts of atmospheric rivers in extreme precipitation on the European Macaronesian Islands, Atmosphere, 9, doi:10.3390/atmos9080325.
  88. Nash, D., D. Waliser, B. Guan, H. Ye, and M. Ralph (2018), The role of atmospheric rivers in extratropical and polar hydroclimate, J. Geophys. Res. Atmos., 123, 6804–6821, doi:10.1029/2017JD028130.
  89. Shields, C. A., and Coauthors (2018), Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design, Geosci. Model Dev., 11, 2455–2474, doi:10.5194/gmd-11-2455-2018.
  90. Eiras-Barca, J., A. M. Ramos, J. G. Pinto, R. M. Trigo, M. L. R. Liberato, and G. Miguez-Macho (2018), The concurrence of atmospheric rivers and explosive cyclogenesis in the North Atlantic and North Pacific basins, Earth Syst. Dynam., 9, 91-102, doi:10.5194/esd-9-91-2018.
  91. Espinoza, V., D. E. Waliser, B. Guan, D. A. Lavers, and F. M. Ralph (2018), Global analysis of climate change projection effects on atmospheric rivers, Geophysical Research Letters, 45, 4299–4308, doi:10.1029/2017GL076968.
  92. DeFlorio, M. J., D. E. Waliser, B. Guan, D. A. Lavers, F. M. Ralph, and F. Vitart (2018), Global assessment of atmospheric river prediction skill, Journal of Hydrometeorology, 19, 409–426, doi:10.1175/JHM-D-17-0135.1.
  93. Guan, B., D. E. Waliser, and F. M. Ralph (2018), An inter-comparison between reanalysis and dropsonde observations of the total water vapor transport in individual atmospheric rivers, Journal of Hydrometeorology, 19, 321–337, doi:10.1175/JHM-D-17-0114.1, Special Collection on Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2).
  94. Yang, Y., T. Zhao, G. Ni, and T. Sun (2018), Atmospheric rivers over the Bay of Bengal lead to northern Indian extreme rainfall, Int. J. Climatol, 38, 1010-1021, doi:10.1002/joc.5229.
  95. Huning, L. S., S. A. Margulis, B. Guan, D. E. Waliser, and P. J. Neiman (2017), Implications of detection methods on characterizing atmospheric river contribution to seasonal snowfall across Sierra Nevada, USA, Geophysical Research Letters, 44, 10445–10453, doi:10.1002/2017GL075201.
  96. Paltan, H., D. Waliser, W. H. Lim, B. Guan, D. Yamazaki, R. Pant, and S. Dadson (2017), Global floods and water availability driven by atmospheric rivers, Geophysical Research Letters, 44, 10387–10395, doi:10.1002/2017GL074882.
  97. Kim, J., B. Guan, and Coauthors (2017), Winter precipitation characteristics in western US related to atmospheric river landfalls: observations and model evaluations, Clim. Dyn., 50, 231–248, doi:10.1007/s00382-017-3601-5.
  98. Lamjiri, M. A., M. D. Dettinger, F. M. Ralph, and B. Guan (2017), Hourly storm characteristics along the U.S. West Coast: Role of atmospheric rivers in extreme precipitation, Geophys. Res. Lett., 44, 7020–7028, doi:10.1002/2017GL074193.
  99. Guan, B., and D. E. Waliser (2017), Atmospheric rivers in 20 year weather and climate simulations: A multimodel, global evaluation, J. Geophys. Res. Atmos., 122, doi:10.1002/2016JD026174.
  100. Waliser, D. E., and B. Guan (2017), Extreme winds and precipitation during landfall of atmospheric rivers, Nature Geoscience, 10, 179–183, doi:10.1038/ngeo2894.
  101. Debbage, N., P. Miller, S. Poore, K. Morano, T. Mote, and J. M. Shepherd (2017), A climatology of atmospheric river interactions with the southeastern United States coastline, Int. J. Climatol., doi:10.1002/joc.5000.
  102. Garaboa-Paz, D., J. Eiras-Barca, and V. Pérez-Muñuzuri (2017), Climatology of Lyapunov exponents, The influence of atmospheric rivers on large-scale mixing variability, Earth Syst. Dynam. Discuss., doi:10.5194/esd-2017-1, in review.
  103. Gimeno L., F. Dominguez, R. Nieto, R. Trigo, A. Drumond, C. J. C. Reason, A. S. Taschetto, A. M. Ramos, R. Kumar, and J. Marengo (2016), Major mechanisms of atmospheric moisture transport and their role in extreme precipitation events, Annual Review of Environment and Resources, 41, 117–141, doi:10.1146/annurev-environ-110615-085558.